Interband Transitions, IR-Active Phonons, and Plasma Vibrations of Some Metal Hexaborides

H. Werheit, T. Au, and R. Schmechel¹

Solid State Physics Laboratory, Gerhard-Mercator University of Duisburg, D-47048 Duisburg, Germany

and

Yu. B. Paderno and E. S. Konovalova

I.N. Frantsevich Institute for Problems of Materials Science, Ukrainian Academy of Sciences, 252142 Kiev Ukraine

Received September 9, 1999; in revised from January 24, 2000; accepted January 30, 2000

The high IR reflectivity of monocrystalline metallic metal hexaborides is superimposed by weak phonon spectra. The symmetry selection rules are lifted, probably because of structural defects. From the plasmon-phonon polariton frequencies in metallic LaB₆ compared with those in semiconducting EuB₆ and YbB₆, the softening and the hardening of specific F_{1u} modes by the free carriers are determined. From the plasma edges of EuB₆ and YbB₆, some parameters of the electronic transport are derived. The electron concentration increases proportional to the C content, whose donor properties are found to be comparable to those of hydrogen-like impurities. The existence of energy gaps in EuB₆ and YbB₆ proves that these compounds are semiconductors. © 2000 Academic Press

INTRODUCTION

The unit cell of the cubic structure contains one formula weight of MB_6 . Most of the rare-earth metals and moreover Ca, Sr, Ba, Th, Np, Pu, and Am form isostructural hexaborides. The boron atoms are arranged in regular octahedra positioned at the corners of the unit cell, whose center is occupied by the metal atom. The metal hexaborides are interesting materials for fundamental science and application as well. For application their low work functions combined with high melting points are important. In fundamental science at present the influence of structural defects on the various physical properties is in the foreground of interest, and in some cases the question is whether the compounds are semiconductors or semimetals. The IR optical investigations in the present paper were performed to contribute to the solution of these questions.

SAMPLE MATERIAL

Pure single-crystal metal hexaborides YB₆, LaB₆, CeB₆, SmB₆, Sm_{0.8} B₆, and TbB₆ (metal-like) and EuB₆ and YbB₆ (semiconducting) were investigated. The source borides were obtained by the reduction of high-purity metal oxides with amorphous boron in vacuum. The crystals were grown by the induction zone melting method under argon at pressures between 1.5 and 18 atm, depending on the specific compound. The purity is typically better than 99.5%; usually there are certain deficiencies in both sublattices. The C content is not higher than 0.1% (however see Fig. 7). Additionally, sintered polycrystalline EuB₆ (ESK) with a C content of 1.1 at.% and sintered EuB_{6-x}C_x ($X \sim 0.1$) (ESK) (C = 1.43 at.%) (1) are investigated.

RESULTS

(a) Semiconducting Metal Hexaborides

The reflectivity spectra of the semiconducting EuB_6 and YbB_6 are presented in Fig. 1. For the pure single crystals the spectra are obviously essentially determined by the plasma edges of free carriers. In agreement with group theory two phonons are clearly seen. However, the dispersion curves in the range of these resonances suggest that they are to be attributed to plasmon-phonon polaritons, whose frequency is shifted by the plasmon-phonon interaction (2, 3).

For metallic LaB₆ and SmB₆ the phonon frequencies 214 cm^{-1} (in good agreement with our result in Table 1) and 172 cm^{-1} , respectively, were obtained by Raman spectroscopy in (5). The comparison with our data for the

¹Present address: Darmstadt University of Technology, Material Science, Department of Electronic Materials, D-64287 Darmstadt, Germany.

FIG. 1. IR reflectivity spectrum of (a) single-crystal pure and polycristalline carbon-doped EuB_6 and (b) single-crystal pure YbB₆. The plasmon-phonon polaritons are indicated by arrows.

semiconducting EuB_6 and YbB_6 clearly shows the influence of the carrier concentration on the phonon frequencies.

The absorption spectra of EuB_6 and YbB_6 determined from the reflectivity spectra by a Kramer-Kronig transformation are displayed in Fig. 2. At low frequencies, the absorption decreasing with decreasing energy indicates that the free carrier absorption has no significant influence in

 TABLE 1

 Plasmon–Phonon Polariton Frequencies of F_{1u} Phonon Modes

 in Semiconducting and Metallic Metal Hexaborides

Compound	$v_1(cm^{-1})$	$v_2(cm^{-1})$	
Semiconductors			
EuB ₆	146	858.5	
YbB ₆	109	868	
Metal			
LaB ₆	207.3	498.4	

this range. Therefore, assuming phonon scattering, an empirical slope for the maximum free carrier absorption is calculated, which is fitted to the lowest absorption at the low-energy end of the measured spectra.

(b) Metallic Metal Hexaborides

For the metallic hexaborides the plasma edges are far outside the investigated spectral range. Accordingly, in the range below 5000 cm⁻¹ only the high reflectivity due to the negative real part of the dielectric function is seen in Fig. 3. In the phonon range ($<1500 \text{ cm}^{-1}$) the high reflectivity is superimposed by a weak structure, which is similar for the different compounds, only slightly shifted in frequency for the individual hexaborides. The only exception is LaB₆, showing only two but more significant dispersive structures in the spectral range of phonons (Fig. 4). Surprisingly, the phonon spectrum of Sm_{0.8}B₆ is much weaker than that of SmB₆, in contrast to a higher defect concentration in Sm_{0.8}B₆ expected because of the considerable metal deficiency.

FIG. 2. IR absorption spectrum of (a) EuB₆ and (b) YbB₆ calculated from the reflectivity spectra in Fig. 1 using a Kramers–Kronig transformation. An empirical slope for the free carrier absorption ($\propto \lambda^2$ for phonon scattering) is calculated.

FIG. 3. IR reflectivity spectra of single-crystal pure YB₆, LaB₆, CeB₆, SmB₆, Sm $_{0.8}B_{6}$, and TbB₆. Some of the spectra are vertically shifted to avoid superposition. The amount of the shifts are indicated next to the spectra.

DISCUSSION

(a) Phonons

The optical vibration modes of the MB_6 compounds at the Γ point are described (4) by

$$\Gamma_{opt} = A_{1g} + E_g + F_{1g} + F_{2g} + 2F_{1u} + F_{2u}$$

where an additional F_{1u} mode is acoustical. The A_{1g} , E_g , and F_{2g} modes are Raman active and the two F_{1u} modes are IR active. However, it is well known that even high-purity carefully prepared single crystals of the metal hexaborides exhibit considerable structural defects, in particular vacancies in the boron and metal sublattices. With these defects the lifting of the symmetry selection rules in the Raman spectra was qualitatively explained (5–7). Therefore it is expected that the IR phonon spectra as well are not

FIG. 4. IR reflectivity of LaB_6 in the spectral range of the plasmon-phonon polaritons. The interferences are probably not an effect from the sample.

FIG. 5. Phonon frequencies obtained from the IR absorption spectra (calculated from the measured reflectivity spectra by the Kramers–Kronig transformation). The same symbols are used for phonons in different compounds, which can probably be attributed to one another. The dashed lines represent the Raman frequencies measured in (8). The solid lines combine the polaritons of the semiconducting hexaborides EuB_6 and YbB_6 , and the arrows indicate the shift to the related resonance frequency in LaB_6 (see Table 1).

restricted to the IR-active phonons, and this suggests to interpret the weak structures in the reflectivity spectra accordingly. Apart from the structural defects mentioned, there are structural distortions in boron compounds with natural isotope enrichment (~19% 10 B, ~81% 11 B) because the isotopes have remarkably different zero-point energies. Numerous investigations on the phonon spectra in icosahedral boron-rich solids suggest that these distortions are not sufficient to lift the symmetry selection rules; a final decision, however, is still open. In Fig. 5 the phonon frequencies of the metallic hexaborides found in the IR spectra follow the same tendencies as those obtained by Raman spectroscopy (8) For SmB_6 it is shown in Fig. 6 that the maxima of the phonon absorption bands well agree with the phonon DOS maxima determined by neutron scattering (9), irrespective of the symmetry selection rules. In the FT Raman spectrum (7) included in Fig. 6 for comparison, the peak correlated with the lowest frequency optical vibration at the Γ point is considerably shifted toward frequencies lower than that of the IR absorption spectrum. Taking into

FIG. 6. Phonon absorption spectrum of SmB_6 (*k*, absorption index) compared with the FT Raman spectrum (7) measured on the same sample and phonon dispersion curves (collected for all crystallographic directions) reproduced from (9).

account that both results were obtained on the same sample, one comes to the conclusion that the high 4-W excitation power of the Nd:YAG laser in the FT Raman spectrometer causes the softening of this phonon mode from 157 cm⁻¹ (IR, this paper) to 118 cm⁻¹ (FT Raman) (7) (small peak of the Raman spectrum in Fig. 6). The obvious reason is that the density of carriers in the intermediate valent SmB₆ is considerably changed by the optical excitation, while it remains largely unchanged in metallic LaB₆ (7).

The shift of the polariton frequencies from the semiconducting EuB₆ and YbB₆ to the metallic LaB₆ makes it possible to quantitatively estimate the softening of the highfrequency F_{1u} mode by -362 cm⁻¹ and the hardening of the low-frequency F_{1u} mode by +91.6 cm⁻¹ (see indication by arrows in Fig. 5). This shift is obviously due to the higher carrier concentration in metallic LaB₆, which after Grushko *et al.* (10) exceeds that in semiconducting EuB₆ and YbB₆ by about two orders of magnitude.

(b) Plasma Vibrations

The plasma edges in the reflectivity spectra of EuB_6 and YbB_6 can be well described by the classical Drude theory.

FIG. 7. Real part of the dielectric function of EuB_6 vs the squared reciprocal wavenumber.

For $\omega_{\tau} \ll \omega_p$ the expected linear slope of ε' vs $1/\omega^2$ according to $\varepsilon' = \varepsilon_L - (\omega_p^2/\omega^2)$ yields the dielectric constant of the lattice ε_L by extrapolation to $1/\omega^2 = 0$ and the plasma resonance frequency ω_p by extrapolation to $\varepsilon' = 0$ (for EuB₆ see Fig. 7). The results are listed in Table 2. Using the average effective mass of free carriers determined for EuB₆ from magnetoresistance experiments (11), the carrier concentrations of our EuB₆ samples were determined.

In Fig. 8 (results partly obtained from (12)), it is shown that the carrier concentration of EuB₆ is largely proportional to the carbon content. Schwetz *et al.* (14) proved that the lattice parameter of EuB_{6-x} C_x decreases linearly with the carbon content up to the solution limit. This excludes the interstitial accommodation of carbon atoms that would cause a dilatation of the structure. Therefore we assume that the carrier concentration comes essentially from a donor level generated by C atoms substituting for regular B atoms. The ionization energy of this donor level can be roughly estimated: With the lattice parameter a = 4.185 Å one obtains for 1 at.% carbon 9.55×10^{20} C atoms cm⁻³, which—according to Fig. 8—provide 4.8×10^{20} electrons cm⁻³ at 300 K. Then

$$\delta E(C \text{ in } EuB_6) = k_B T \ln (N_C/n_e) \sim 18 \text{ meV}.$$

	1	ABLE 2			
Some Electronic Tra	nsport Parameters	of Semiconducting	Metal	Hexaborides	at 300 K

Compound	\hat{c}_L	$\omega_p (\mathbf{s}^{-1})$	$m_{\rm n}^*/m_0$	Direction of calculation	$n_{\rm e} ({\rm cm}^{-3})$
EuB_6 (single crystal)	6.1 (1)	2.4×10^{14}	0.225 (11)	\rightarrow	2.5×10^{19}
EuB_6 (ESK, sintered)	7.0 (1)	9.1×10^{14}	0.225 (11)	\rightarrow	4.1×10^{20}
EuB _{5.9} C _{0.1} (ESK, sintered)	8.9 (1)	1.1×10^{15}	0.225 (11)	\rightarrow	7.8×10^{20}
YbB ₆ (single crystal)	7.0 (2)	1.7×10^{14}	0.47	←	3.1×10^{19}

FIG. 8. Carrier concentration vs C content; data at C = 0.43 and 0.71 at.% from (12). The points for the pure crystals investigated in the present paper suggest that the upper limit of 0.1 at.% is too high and the real C content is only about 0.05 at.%. The arrow marks the relation between the chemically determined total C content of 1.1 at.% and that in the EuB₆ lattice, which according to experience is roughly estimated to be about 25% lower in sintered EuB₆ (13).

Unfortunately in the case of YbB_6 the relation between carrier and carbon concentration is available for only one compound (12). If one assumes the same dependence as in EuB_6 between electron concentration and carbon content one obtains

$\delta E(C \text{ in YbB}_6) \sim 11 \text{ meV}.$

These values are compatible with the ionization energies of hydrogen-like impurities in classical semiconductors and satisfactorily agree with transition no. 2 of both compounds in Table 3 determined from the decomposition of the absorption edge (see below).

Because of the same preparation method we assume that the C contents of our EuB₆ and YbB₆ crystals are nearly the same. Therefore, from the relation $n(YbB_{5.97}C_{0.03})/(n(EuB_{5.97}C_{0.03}) = 1.22$ (12), we estimated for our YbB₆ sample the carrier concentration and from that the effective mass in Table 2.

TABLE 3Optical Transition Energies ΔE of the SemiconductingEuB₆ and YbB₆

No.	$\frac{\text{EuB}_{6}}{\Delta E \text{ (meV)}}$	$\frac{\text{EuB}_{6} \text{ (ESK)}}{\Delta E \text{ (meV)}}$	$\frac{\text{YbB}_{6}}{\Delta E \text{ (meV)}}$	Type of Transition
1	9.55(10)	7.6(3)	7.45(5)	Impurity to band
2	13.2(3)	15(1)	10.4(2)	Impurity to band or direct-forbidden interband
3	20.1(5)	_	15.2(5)	Direct-allowed interband
4	32.8(2)	34 (3)	26.0(4)	Direct-allowed interband

(c) Interband Absorption

The strength of the absorption in Figs. 2a and 2b respectively ($\alpha > 10^4$ cm⁻¹) indicates electronic interband transitions. The absorption edges of EuB₆ and YbB₆ are shown in a higher resolution in Figs. 9a and 9b. The distinct peaks at 18.2 and 14.6 meV were attributed to polaritons (see above) because electronic transitions at this energy should be largely smoothed at 300 K.

The absorption edge was decomposed step by step into several electronic transitions using a local computer program, which makes it possible to fit the different theories of interband transitions (see, e.g., (15)) or impurity level absorption (16) to the measured spectra and easy to decide which fit is the best.

The existence of energy gaps of EuB_6 and YbB_6 definitely proves that these metal hexaborides are semiconductors and not semimetals, contrary to the conclusion (for EuB_6) by Aronson *et al.* (11) and to the band structure calculation by Hasegawa and Yanase (17).

In agreement with numerous investigations of other authors on metal hexaborides, in the present paper it became evident that structural defects play an important role in these solids, even if the crystals are very carefully prepared. For icosahedral boron-rich solids containing

FIG. 9. Absorption edge of (a) EuB_6 and (b) YbB_6 . For free carrier absorption see the text in connection with Fig. 2.

considerable defect concentrations as well, it has recently been proved that the structural defects are immediately correlated with the electronic properties in a way that defects are generated to transform the crystal into an apparently energetically more favorable state of a semiconductor, compared with the theoretical band structure calculations on hypothetical undistorted structures indicating metallic behavior (18, 19). This could hold in the case for the metal hexaborides as well, and could, for example be, the reason that in $Sm_{0.8}B_6$ the lattice distortions are considerably lower than those in SmB_6 (see above).

ACKNOWLEDGMENT

The authors are grateful to Dr. K. A. Schwetz, Elektroschmelzwerk Kempten, for providing the carbon-doped EuB_6 samples and their chemical analysis.

REFERENCES

- H. Knoch, K. A. Schwetz, E. Bechler, and A. Lipp, *in* "Proceedings 9th International Symposium Boron, Borides and Related Compounds, University of Duisburg, Duisburg, Germany, Sept. 21–25, 1987" (H. Werheit, Ed.), p. 442.
- E. Gerlach and P. Grosse, in "Advances in Solid State Physics" (J. Treusch, Ed.), Vol. 17, p. 157. Vieweg, Braunschweig, 1977.
- P. Grosse, "Freie Elektronen in Festkörpern," Springer-Verlag, Berlin, 1979.
- 4. Z. Yahia, S. Turrell, J.-P. Mercurio, and G. Turrell, J. Raman Spectrosc. 34, 307 (1993).

- 5. I. Mörke, V. Dvorak, and P. Wachter, Solid State Commun. 40, 331 (1981).
- G. Schell, H. Winter, H. Rietschel, and F. Gompf, *Phys. Rev. B* 25, 1589 (1982).
- R. Schmechel, H. Werheit, and Y. Paderno, J. Solid State Chem. 133, 264 (1997).
- E. Zirngiebl, S. Blumenröder, R. Mock, and G. Güntherodt, J. Magn. Magn. Matero 54–57, 359 (1986).
- P. A. Alekseev, A. S. Ivanov, K. A. Kikoin, A. S. Mischenko, A. N. Lasukov, A. Yu. Rumyantsev, I. P. Sadikov, E. S. Konovalova, Yu. B. Paderno, B. Dorner, and H. Shober, *in* "Boron-Rich Solids, Proceedings 10th International Symposium on Boron, Borides, and Related Compounds, Albuquerque, NM, 1990" (D. Emin, T. L. Aselage, A. C. Switendick, B. Morosin, and C. L. Beckel, Eds.), AIP Conf. Proc. 231, p. 318. American Institute of Physics, New York, 1991.
- Yu. S. Grushko, Yu. B. Paderno, K. Ya. Mishin, L. I. Molkanov, G. A. Shadrina, E. S. Konovalova, and E. M. Dudnik, *Phys. Stat. Sol. B* 128, 591 (1985).
- M. C. Aronson, J. L. Sarrao, Z. Fisk, M. Whitton, and B. L. Brandt, *Phys. Rev. B* 59, 4720 (1999).
- J. M. Tarascon, J. Etourneau, J. M. Dance, P. Hagenmuller, R. Georges, S. Angelov, and S. v. Molnar, *J. Less-Common Met.* 82, 277 (1981).
- 13. K. A. Schwetz, Personal Communication, 1999.
- 14. K. A. Schwetz, M. Hoerle, and J. Bauer, Ceram. Internatl. 5, 105 (1979).
- 15. R. A. Smith, "Wave Mechanics of Crystalline Solids." Chapman
- & Hall, London 1961. 16. G. Lucovsky, *Solid State Commun.* **3**, 299 (1965).
- 17. A. Hasegawa and A. Yanase, J. Phys. Coll. C 5 (Suppl. 6), 41, 377 (1980).
- 18. R. Schmechel and H. Werheit, J. Phys.: Condens. Matter 11, 6803 (1999).
- 19. R. Schmechel and H. Werheit, J. Solid State Chem. 154, 61 (2000).